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Abstract

Training reinforcement learning models to play video
games is a difficult task, made harder by the fact that they
must simultaneously learn important visual features of the
input images and attempt to find the best policy based on
these features. We present a possible approach to alleviate
this problem by pre-training the parameters of reinforce-
ment learning models using behavioral cloning, a type of
supervised learning.

First, we develop a behavioral cloning model using a
convolutional neural network that can proficiently play the
2-D video game Crypt of the Necrodancer just by study-
ing human gameplay, achieving 80% validation accuracy
on labeled data. We use this model’s learned parameters
to pre-train two reinforcement learning models: a policy
gradient model and a Deep Q-Network model. Despite be-
ing limited in training time due to difficulties with the in-
frastructure of our training environment, we report that this
method of pre-training is reasonably effective for bootstrap-
ping reinforcement learning. In particular, pre-training al-
lows models to more quickly explore the state space of the
game and achieve meaningful reward sooner than non pre-
trained models.

1. Introduction
1.1. Problem Statement and Overview

Training a Reinforcement Learning (RL) model to play
a moderately complex game is a difficult problem. While
algorithms such as deep Q-learning have begun to demon-
strate good performance on some games, applying rein-
forcement learning to games in general remains finicky
[14]. One of the reasons for this is that an RL algorithm
starts off with no information about what actions are effec-
tive in a given game, and, when using an untrained convo-
lutional network as input to the agent, no intuition about
what visual signals are important for making decisions, like

a human would have. Recent work in understanding human
priors in video games (such as the importance of objects
and visual consistency) indicates how RL algorithms are at
a distinct disadvantage for playing games intended for hu-
mans [9]. Might there be a way to give a reinforcement
learning agent this information so it doesn’t have to learn it
all through trial and error?

One way to address this problem involves recorded hu-
man play in the form of a dataset of screen captures. Labels
for this dataset would be the human player’s corresponding
control inputs to the game. A convolutional neural network
trained on such a dataset could learn visual features impor-
tant for decision making, and we could use the weights of
this network to “pre-train” a reinforcement learning model.
This reduces the problem to two, more manageable chunks:
a standard image-classification problem on labeled data (the
human actions) followed by the RL reward-maximization
problem. This method is promising because it prevents the
model from needing to learn visual features of the environ-
ment solely by random exploration.

Our results indicate that using behavioral cloning to pre-
train the weights allows the reinforcement learning agent to
better explore the state space of the game during training
and achieve higher average reward. Although our model’s
training time was limited by system issues (described later),
this method seems promising for bootstrapping the train-
ing of reinforcement learning models. In particular, with-
out pre-training, our reinforcement learning agents spend
many iterations taking random actions without achieving
any reward. However, our pre-trained reinforcement learn-
ing agents are immediately capable of taking non-random
actions and achieving reward, which both allows meaning-
ful training to begin earlier and serves as a better starting
point for complex decision making.

1.2. Related Work

The field of reinforcement learning has been reinvigo-
rated in the last decade, partially due to the rise of neural
networks as general purpose function approximators. In
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groundbreaking work on applying reinforcement learning to
classic Atari games, Mnih et al. demonstrated the efficacy
of using a neural network to approximate the Q function for
Q-learning [14]. Additionally, they applied the technique of
experience replay, where a buffer of state, action, reward,
new state pairs (s, a, r, s′) is used to update the Q-network
instead of the most recent observed transitions, helping to
stabilize the training process.

Despite recent advances in RL techniques inspired by the
success of this paper, many have found that training rein-
forcement learning agents is a difficult process that often
encounters “lack of stability during learning, low levels of
robustness in the learnt behaviours, and slowness in con-
vergence” [16]. Different approaches have been proposed
to solve some of these problems, including averaging over
previous Q-value estimates [4], but the training process for
RL algorithms remains challenging. We consider the idea
of transfer learning as an aid for this challenge.

The idea of using useful information from one model to
boost the performance of another is not new in the field of
computer vision. Transfer learning has been used in many
domains to assist in the training of neural network models
[20], and studies have attempted extending this technique to
reinforcement learning. One study successfully pre-trained
simpler RL models that receive domain-specific features as
input instead of raw pixels [3]. Additionally, “supervised re-
inforcement learning” approaches have been developed that
use prior knowledge to solve problems in mobile robotics
[16]. Notably, DeepMind’s AlphaGo first learned its policy
networks through supervised learning of expert play [18].

These methods precede the training of their RL algo-
rithms with the incorporation of some prior information,
so that the agent doesn’t have to learn all of the environ-
ment dynamics through random exploration. However, they
do not operate based solely on visual information, incor-
porating sensorial data, game features, and expert knowl-
edge. For our project, the most notable related work is Cruz
et al.’s exploration of pre-training convolutional neural net-
works for deep reinforcement learning [7]. In this work,
human gameplay is used as prior information for RL al-
gorithms operating in the domain of Atari games, similar
to Minh et al. We build off of this work by using a simi-
lar technique of pre-training the convolutional portion of a
DQN with human demonstration. However, we also explore
different RL algorithms, including more traditional policy
gradients [19], and different neural network architectures,
including ResNet [10].

A final piece of related work worth noting is the re-
cently developed asynchronous advantage actor-critic algo-
rithm (A3C) [13] for reinforcement learning. In this algo-
rithm, a policy and value function are estimated with neural
networks instead of a Q-function, and additional parallelism
is supported through the training of multiple “workers” that

each contribute to model updates. Cruz et al. describes
A3C as “a new benchmark for deep RL” and experiments
with applying pretraining to A3C as well as DQN. We did
not experiment with the A3C algorithm as it is substantially
complex to implement, and fell outside the scope of our
project.

2. Data Infrastructure
2.1. Game Choice and Data Acquisition

We will explore this problem specifically through the
game Crypt of the Necrodancer, a 2-D rhythm rogue-
like. Our dataset consists of gameplay frames (resized
to 180x180 or 224x224 px.) recorded by one of the re-
searchers with the associated input on each frame out of
4 categories: up, right, down, and left. All recorded data is
from zone 1-1, the first zone of the game, and uses the basic
character without picking up any items.

We chose Crypt of the Necrodancer for its small num-
ber of allowed inputs (arrow keys) and its rhythmic nature.
Because everything in the game happens on the beat, the
player’s actions and the environment’s responses are very
discrete. This makes the comparison to a Markov Decision
Process (MDP) especially clear. To simplify training and
testing our model, we disable the rhythm component in the
game (by choosing to play as a specific character) and query
the model for the next action only once it has arrived on the
next square.

We acquired 100 sessions of human gameplay in which
a random variant of level 1-1 is beaten, each about 1 minute
long in wall-clock time. We captured game frames at the
instant the player pressed an arrow key, giving us the game
state that the player was responding to by pressing said key.
Beating level 1-1 requires roughly 130 moves on average,
so each session had about 130 frames of labeled training
data. In total, we had 12460 captured frames which were
randomly split 90-10 into a training set of size 11214 and a
validation set of size 1246.

2.2. Data Processing

Our input data, before processing, are 1024x1024 px.
image captures of the game after each action. We then
pad these images with black to 1080x1080 px. in order to
align the image with the in-game grid of tiles. Once this is
done, the image is a 15x15 grid of 72x72px in-game grid
tiles. We then downscale these images to 180x180 px. us-
ing nearest-neighbor interpolation in order to train our net-
work. We chose nearest-neighbor interpolation over bicubic
because games have colorful, well defined shapes, and near-
est neighbor interpolation can do a better job preserving the
information-dense, rough edges between them. This deci-
sion is informed by a past CS231N project dealing with the
same issue [6]. See Fig. 1 for details on our image process-
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ing pipeline.

Figure 1. Top Left. A direct game capture of the game with size
1024x1024. Top Right. The same image as Top Left, but padded
to 1080x1080 as mentioned in section 3.1. Bottom Left. The
360x360 result from downscaling the 1080x1080 image. Note that
in the original game, each game pixel is a 3x3 square of actual
pixels, so this downscaling is lossless. Bottom Right. The (lossy)
180x180 result from downscaling the Bottom Left image using
nearest-neighbor interpolation. This image is then normalized as
mentioned in 3.1 before training.

After we prepare the training data as in Fig. 1, we then
normalize our data channel-wise by subtracting the mean of
each of the three RGB channels over all images in the train-
ing set and dividing by the standard deviation similarly. We
considered pixel-wise normalization, but encountered prob-
lems with it. Namely, some UI elements in the game almost
never changed in the human training set. For example, the
heart meter almost never reached 1/2 a heart in the train-
ing set, because disabling rhythm makes the first level of
the game fairly easy for a human player. This caused the
standard deviation of those pixels in the training set to be
nearly 0. Because of this, if they changed during the agent’s
play, their normalized values became extremely high. This
often caused the agent to disregard other information from
the input and make the same erroneous decision over and
over again. Generally, we found that channel normalization
makes the convolutional network more robust to situations
where certain specific pixels take on values never seen in
the training set.

Moreover, we also experimented using pre-made archi-
tectures, namely ResNet [10], which use input image sizes
different than 180x180. For these models, we simply took

the 1024x1024 px. game capture and used nearest-neighbor
interpolation to downscale to 224x224 px., the size that this
architecture expects. This does not use any zero padding to
perfectly align the game squares as described earlier.

We do not use data augmentation because our captured
images have precisely the same format across the entire
training set, so many of the traditional augmentation meth-
ods, such as cropping, rescaling, flipping, etc., do not apply
in our context. We did consider using tools such as SMOTE
[5], which takes convex combinations of pre-existing data
to create more training data, but decided that these would
create images too different from the original recorded data
to be useful due to the game’s regular structure.

3. Methods
3.1. Behavioral Cloning (BC)

Using our dataset of human gameplay and associated
control inputs, we tested multiple Convolutional Neural
Network (CNN) architectures in a supervised learning envi-
ronment: classifying actions given the current game capture
frame. This reduces the problem to simple image classifi-
cation. Of course, this simplicity means that these CNNs
have no notion of reward in the game environment, as their
goal is not playing the game well (as defined by a reward
function) but just to imitate human play. The parameters
and weights of these CNN models were then used to pre-
train reinforcement learning algorithms, described later in
sections 3.3 and 3.4.

We anticipated that a somewhat non-standard convo-
lutional architecture could prove more effective than an
existing architecture such as ResNet. This is because of
the grid-aligned nature of our training data; stride lengths
and kernel sizes which align with the game grid to preserve
spatial information may be more effective than, say, a 3x3
filter with stride 1. We tested using the following two
architectures: “Simple” and “Deeper.”

Model 1: “Simple” - input 180x180x3 image

1. CONV6: 6 × 6 size, 32 Filters, stride 3, padding 9.
2. CONV3: 3 × 3 size, 16 Filters, stride 1, padding 1.
3. CONV3: 3 × 3 size, 16 Filters, stride 2, padding 0.
4. Fully Connected: 8192 × 200 size.
5. Fully Connected: 200 × 60 size.
6. Fully Connected: 60 × 4 size.

Model 2: “Deeper” - input 180x180x3 image

1. CONV6: 6 × 6 size, 32 Filters, stride 3, padding 9.
2. Batch Normalization layer.
3. CONV3: 3 × 3 size, 32 Filters, stride 1, padding 1.
4. Batch Normalization layer.
5. CONV3: 3 × 3 size, 32 Filters, stride 1, padding 1.
6. Max pooling layer, stride 2.

3



7. Batch Normalization layer.
8. CONV3: 3 × 3 size, 32 Filters, stride 1, padding 1.
9. Batch Normalization layer.

10. CONV3: 3 × 3 size, 32 Filters, stride 1, padding 1.
11. Max pooling layer, stride 2.
12. Batch Normalization layer.
13. CONV3: 3 × 3 size, 32 Filters, stride 2, padding 0.
14. Fully Connected: 8192 × 200 size.
15. Dropout, p = 0.5.
16. Fully Connected: 200 × 60 size.
17. Dropout, p = 0.5.
18. Fully Connected: 60 × 4 size.

For both models, immediately succeeding every convo-
lutional and fully connected layer is a ReLU layer, omitted
for brevity. Additionally, the large padding on layer 1 re-
sizes the next layer from 180x180 to 64x64 for convenience.
We chose these architectures based on the architecture used
in the original DQN paper [15], which used three convolu-
tional layers and a single fully connected layer, similar to
our “Simple” architecture.

Furthermore, as a baseline, we also tested using the
ResNet34 architecture included in PyTorch [17]. For
brevity, we do not include details of their architecture here,
which can be found in Section 3.3 of [10]. The only modifi-
cation we made to this architecture was changing the num-
ber of output classes in the final Fully Connected layer
from 1,000 to 4, because ResNet34 was originally created
to classify ImageNet images [8]. Furthermore, because the
ResNet34 architecture in PyTorch only accepts images of
size 224x224 px. or larger, we downscaled the gameplay
images to 224x224 px. as mentioned in section 2.2. Note
that even though we used the ResNet34 architecture in our
tests, we did not use transfer learning by pre-training this
network on something like ImageNet. This is because we
are trying to classify actions, not image classes, and the
style of example images used in ImageNet are very different
than those in Crypt of the Necrodancer, which are rougher,
more regular, and not photographs.

For all of these models, we used the Adam gradient de-
scent update rule [12] using the cross entropy loss and a
learning rate of 1e-3. Other hyperparameters for Adam used
the defaults in PyTorch, namely β1 = 0.9, β2 = 0.99 and
zero weight decay. We had a batch size of 64, which was
the largest possible for our GPU capacity, and trained over
eight epochs (about one hour). Due to time constraints, we
did not perform learning rate annealing, which we suspect
could have improved the classifier performance slightly. All
of this testing took place using PyTorch in a customized ver-
sion of the Jupyter notebook from Assignment 2.

3.2. Time Integration

Using the behavioral cloning networks in Section 3.1,
we incorporated temporal information in the same way as
done in [14]. To do this, for each training, validation, and

test image, we “stacked” the last four frames in the history
to create a 180x180x12 input (or 224x224x12 in the case
of ResNet) instead of the single 180x180x3 image. This
allows the network to see backwards in time a handful of
frames, which is necessary for some decision making in the
game, namely navigation and enemies with sparse move-
ment patterns that only move once every few frames.

To implement this, the only necessary change was to
change the first convolutional layer in all three of our mod-
els (“Simple,” “Deeper,” and ResNet34) to expect 12 input
channels instead of three. From now on, we call this inte-
gration “quads” to differentiate it from classification using
only a single frame, which we call “singles.”

We also experimented with other ways of incorporat-
ing temporal information, including Late Integration, intro-
duced in [11], but in our testing we found that this offered
no improvement over single-frame models, so we did not
pursue it in this work.

3.3. Policy Gradients

The BC networks from Section 3.1 take a game state as
input and output class scores for the four actions. We inter-
pret these networks as stochastic policy networks, in which
the softmax of their output is used as probabilities of taking
each of the four actions. Doing this, we can use the BC net-
works as the initial policy network for the policy gradient
based REINFORCE algorithm [19]. In this RL algorithm,
we attempt to maximize the value, J , of a policy π parame-
terized by θ,

J(θ) = E
[∑
t≥0

γtrt | πθ
]

where γ is a discount factor for future rewards and rt is
the reward at timestep t. Using an approximation of the
gradient with respect to θ shown in class, the algorithm is
as follows:

1. Sample a trajectory τ = (s0, a0, r0, s1...) from πθ(at |
st)

2. Calculate∇θJ(θ) ≈
∑
t≥0 r(τ)∇θ log πθ(at | st)

3. Update θ ← θ + α∇θJ(θ)

The only hyperparameter of this algorithm is learning rate
α. Intuitively, this algorithm samples a trajectory in the en-
vironment based on the current policy, then performs a gra-
dient update on the policy which increases the probability
of taking actions that led to higher rewards than expected.

3.4. Deep Q-Networks

In a reinforcement learning environment, the Q function
gives the expected value of taking an action from a certain
state: Q(s, a). When the state space of an environment is
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very large, this Q function may be intractable to explicitly
represent. Therefore, in deep Q-Networks, we train a neural
network to approximate the Q function. Having an estimate
of the Q function for a given state and its actions is useful
because you can use it to define the optimal policy, in which
you take the action with the maximum expected value:

π∗(s) = argmax
a

Q∗(s, a)

To measure the correctness of our Q function approximator,
and therefore train it, we articulate the loss in terms of the
Bellman equation, which defines the Q function in terms of
immediate reward and expected future reward.

Q(s, a) = r + γmax
a

Q(s′, a)

Approximation error δ = Q(s, a)− (r + γmax
a

Q(s′, a))

To minimize this error, we use the Huber loss, defined as

L =
1

|B|
∑

(s,a,r,s′) ∈ B

L(δ)

where L(δ) =

{
1
2δ

2 for |δ| ≤ 1,

|δ| − 1
2 otherwise.

where B is a batch of (s, a, r, s′) tuples. We choose this
loss function because it is “more robust to outliers when the
estimates of Q are very noisy” due to its linearity when the
loss is of high magnitude [2].

Because our BC convolutional network outputs scores
for the four actions as opposed to estimates of the Q-values
of those actions, directly using its weights to preinitialize
a Q-function approximator network does not make sense
from a theoretical standpoint. As such, we removed the
fully connected layers from the BC network before using
it as a starting point for deep Q-learning; see Section 5.3.

4. Experiments
4.1. Behavioral Cloning

For our behavioral cloning models, we primarily used
validation accuracy as a performance metric. However, in
order to measure the performance of these models in the
actual game, we developed a test set of randomly seeded
levels in the game. We compared our models’ gold score
on these test levels against a human “oracle” score and the
other models scores’.

4.2. Reinforcement Learning

Next, we tested both policy gradients and DQNs in the
Crypt of the NecroDancer environment with a variety of
different settings. The most important experimental change
was of course whether preinitialization was used for the RL

model before training. For all reinforcement learning ex-
periments where we pre-trained the model, we pre-trained
using the parameters and architecture of the “Deeper” BC
model. This is because it performed better than the “Sim-
ple” model and the ResNet34 model was too big to fit on
our GPU memory during RL training.

Another setting we tested was which of the fully con-
nected layers of the BC model to omit for preinitialization,
so that the RL algorithms could relearn decision making
weights based on the somewhat lower level features learned
by the BC network.

Finally, we experimented with a few different epsilon de-
cay schedules for Deep Q-learning, though we mostly set-
tled on one schedule and focused on the other aforemen-
tioned changes.

The reward function we used in these experiments re-
warded the agent for picking up gold and for reaching the
end of the level. If the agent did not get a reward within
the last 80 actions, we terminated the episode to encourage
the agent to continue to actively pursue rewards. We also
tested a variant of this reward function in which the agent
was punished for taking damage from enemies for both pol-
icy gradients and deep Q-learning.

Because we did not have access to a simulator for the
game, many of these experiments were limited to the low
number of 100 episodes, each representing 1 playthrough
of zone 1-1. The game screen was captured for input to
our models and manually parsed for reward indicators. The
models took actions in the environment by programatically
sending keyboard inputs.

Additionally, we quickly found that reinforcement learn-
ing algorithms had a difficult time learning a good pol-
icy when we used a new randomly seeded level for each
training episode. To simplify our results, we therefore per-
formed all our reinforcement learning experiments on the
same seeded level across all training episodes.

5. Results

5.1. Behavioral Cloning Performance

The results of our tests with the various behavioral
cloning architectures can be seen in Table 1. We saw a sub-
stantial improvement from our naive model (“Simple”) to
the slightly deeper model (“Deeper”) with better normaliza-
tion and regularization. We also saw more subtle improve-
ments when using image quads instead of single images.
Qualitatively, the use of image quads had a noticeable ef-
fect on in-game performance. We observed that BC models
trained and tested using image quads were better at navigat-
ing levels and avoiding getting stuck in loops.

Compared with a ResNet34, our best architecture was
much less deep with comparable performance. This was
useful for intensive reinforcement learning training, when
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the necessary information for gradient updates for the
ResNet34 overflowed GPU memory.

Model Val. Acc. 1 2 3 4 5 Mean
Simple, singles 73% 16 14 0 20 0 10
Deeper, singles 77% 3 0 16 35 34 17.6
ResNet, singles 78% 41 31 23 18 2 23
Simple, quads 74% 8 16 9 24 2 11.8
Deeper, quads 79% 9 37 13 43 0 20.4
ResNet, quads 80% 9 34 39 12 46 28

Oracle 154 185 144 200 169 170.4

Table 1. Various model performances, measured by validation ac-
curacy and gold accrued on seeded levels. Each of the numbers, 1
through 5, indicate the gold accrued on each of the levels with the
mean over all five levels in the rightmost column.

5.2. Policy Gradient Performance

Figure 2. REINFORCE algorithm performance over training
epochs. Above: no preinitialization. Below: with preinitialization
from “deeper” BC network.

Figure 2 illustrates the performance of the REINFORCE
algorithm over the course of 100 training epochs with
and without preinitialization with the weights from our
“Deeper” BC network. The reward function being used for
this experiment included punishments for taking damage.
Additionally, none of the fully connected layers of the be-
havioral cloning network were reset prior to its use as the

policy network for REINFORCE.
When initialized with the BC weights, the REINFORCE

algorithm was immediately able to navigate the level, with
reward fluctuating around 30 for the first 20 epochs of train-
ing. Around the halfway point of training, the variance of
the reward gained by the agent decreases, and towards the
end of the set of training epochs the algorithm converges to
a policy which gains a consistent 40 reward. By the end of
training, the model network was functionally a fixed pol-
icy, and it would take the same trajectory each episode with
no exploration. This learned fixed policy can be seen here:
https://youtu.be/emKc8WQkaQo.

In comparison, the model without preinitialization qual-
itatively did a poor job exploring the level, often getting
stuck in corners. In the instances where it navigated towards
enemies, it often took damage and got a negative reward,
having the unfortunate consequence of reinforcing the agent
not to go near the enemies again.

Other experiments with REINFORCE included:

• Not using the last fully connected layer from the BC
network.
• Not using the last two fully connected layers from the

BC network.
• Using a reward function which didn’t punish the agent

for taking damage.

In these experiments, neither the preinitialized network nor
the non-preinitialized network were able to make signifi-
cant progress in learning a good policy for the environment.
We believe this is mostly due to the significant stochasticity
present in the training process, especially considering how
our lack of a simulator for the game severely limited the
number of epochs, and therefore number of experiments,
we were able to perform.

5.3. DQN Performance

Figure 3 illustrates the performance of the Deep Q-
learning algorithm over the course of 100 training epochs
with and without preinitialization with the weights from
our BC network. The reward function being used for this
experiment did not include punishments for taking dam-
age. In contrast to our experiments with REINFORCE,
DQN did seem to benefit from removing the last fully con-
nected layer from the BC network before using it as our Q-
function approximator. This makes sense, as the behavioral
cloning network was not trained with the environment’s re-
ward values in mind. Instead, it simply outputs scores for
the purpose of supervised classification. Because the net-
work would need to update those fully connected weights
to accommodate for this, it makes more sense to just reini-
tialize them before use in deep Q-learning.

With preinitialization, the algorithm had a higher aver-
age reward throughout training and especially in the last 10
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Figure 3. Deep Q-learning algorithm performance over training
epochs. Above: no preinitialization. Below: with preinitialization
from “deeper” BC network.

episodes. Additionally, the higher variance in rewards sug-
gests that the agent was doing a better job exploring the en-
vironment; qualitative observation of the agent during train-
ing supports this idea.

5.4. Behavioral Cloning CNN Visualization

After quantifying the performance of our models, we
performed tests to investigate and understand the decision-
making of one of our behavioral cloning CNNs, namely the
best performing ResNet34 CNN using image quads. Fig-
ure 4 shows an example training set image and its corre-
sponding occlusion map, created using the same method as
described in [21]. We also created other saliency and oc-
clusion maps, but they presented largely similar qualitative
results, so we relegated them to our supplementary material.

Despite Figure 4 only showing example occlusion maps
from our test using ResNet34, the different models (“Sim-
ple” and “Deeper”) show similar patterns. This figure in-
dicates that the model understands that the most important
image in each classification is the most recent image, de-
spite being given no information concerning which of the
four images were most important or even that they were cor-
related. This seems to indicate that our behavioral cloning
model had some notion of how to use the time informa-
tion given despite never being explicitly told that the twelve
channels it was given were related temporally.

Figure 4. An occlusion map of a given training set image quad
during a fight with slimes where the correct action is to move left
(attack the blue slime). Black regions correspond to areas of the
image important for making correct classifications, and white re-
gions correspond to areas that, when removed, make correct clas-
sification more likely. The three most important areas for classi-
fication are the two slimes and the character itself. Note that the
leftmost image is the most recent and the rightmost is the furthest
back in time.

Furthermore, to investigate features the network learned
to classify the best, we sorted all training images by classi-
fication score of the correct class and qualitatively analyzed
what types of situations the model is most confident about.
These findings can be seen in Figure 5. These categories
agree with our own experience watching the model play the
game: it is adept at killing slimes, hopping on gold, and nav-
igating from room to room, in general. We discuss reasons
why the model may have learned these situations particu-
larly well in Section 6.1.

Figure 5. Categories the top forty most confident classifications
roughly fall into. Note that the vast majority of frames do not
have slimes or gold adjacent to the character, indicating that our
CNN model has learned these behaviors (hitting adjacent slimes,
hopping on gold, and moving from room to room) significantly
more strongly than others.
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6. Discussion

6.1. Effectiveness of Behavioral Cloning

Behavioral cloning, although conceptually and theoret-
ically simpler than RL, is surprisingly effective for play-
ing games even with limited, non expert training data. Our
ResNet using quads achieved a validation accuracy of 80%,
which is similar to previous CS 231N projects using behav-
ioral cloning in video games [6]. Unfortunately, mistakes
in Crypt of the Necrodancer are more punishing than many
other games, and a single mistake in a combat encounter
often means death.

Our models had mixed results in encounters with
difficult-to-predict enemies (e.g. bats) and enemies that
move directly at the player (e.g. skeletons and ghosts),
which explains the significantly lower gold accrued than
the oracle in Table 1. We believe that additional training
data could help solve these problems, but primarily being
able to run reinforcement learning for a longer period than
100 sessions would also help. Nevertheless, in many sit-
uations, the model effectively navigates and kills all mon-
sters in randomly-generated rooms never seen before in the
training data, often beating the entire zone. Considering
that this didn’t require any of the complicated reinforce-
ment learning infrastructure that we later developed, behav-
ioral cloning has a lot of appeal as a simple, approachable
strategy for game AI. Our best behavioral cloning model,
utilizing image quads, can be seen in action here: https:
//www.youtube.com/watch?v=8Quvjy1_GfY.

6.2. Impact of Pre-Training on RL

After our experiences training reinforcement learning
models for Crypt of the NecroDancer, we have a much bet-
ter understanding for why such models can be so difficult to
train. Models without pre-training, for lack of a better word,
flail around aimlessly in the game with no conception of the
game’s rules or objectives other than the sparse rewards it
receives. When preinitialized with weights from the behav-
ioral cloning model, however, even given the stochastic na-
ture of RL training, it was clear that the agent’s explorations
of the state space were more useful. For example, without
pre-training, the model often hit a wall with the shovel 80
times before end of the episode, resulting in zero reward.
However, the pre-trained model would often run through a
fair portion of the level, killing one enemy but missing its
dropped gold, then dying to a spike trap in a complicated
combat encounter. Both of these resulted in zero total re-
ward, but the pre-trained model is clearly a better starting
point for RL training.

Looking at figures 2 and 3, it is hard to rigorously and
quantitatively justify the increase in performance caused by
pre-training due to the small (but noticeable) difference in
the rewards over time for non pre-trained and pre-trained

models. This is due to the high variance present during
the training process of RL algorithms and the low num-
ber of experiments we were able to run without a simula-
tor. Nonetheless, our qualitative results and our observa-
tions of the agent’s play give us confidence that pre-training
RL models is a useful strategy, backing up Cruz et al.’s sim-
ilar results [7]. At the bare minimum, we believe that our
work indicates that using behavioral cloning as a starting
point for training RL algorithms is certainly better than ran-
domness.

6.3. Conclusion and Future Work

In this project, we explored neural network models for
game playing in the domain of Crypt of the NecroDancer.
Simple behavioral cloning models that mimicked human
gameplay exceeded expectations in this domain. Attempts
to use these models as starting points for more intelligent
reinforcement learning algorithms were not as successful
as expected, but nonetheless validated the intuition of the
project that such a strategy is promising.

Possible Alternative Architectures. We believe that pos-
sible alternative methods to play Crypt of the Necrodancer
could involve using a Recurrent Neural Network (RNN).
The fact that our models only had access to the last four
frames of the game limited their ability for long-term plan-
ning. Planning in Crypt of the Necrodancer is important for
navigating through levels, so using one of these architec-
tures with longer-term memory may increase in-game per-
formance.

Importance of a Simulator. We learned late into the
project that our reinforcement learning algorithm is rate-
limited not by our compute, but by the ability to run the
game fast enough to play a significant number of sessions.
In fact, Crypt of the Necrodancer runs using the OS clock,
so we couldn’t even use utilities such as Cheat Engine to
forcibly speed up the game in order to train our RL models
faster. We believe that creating a simulator to run the game
fast enough to perform the millions of gameplay steps (as
seen in other reinforcement learning studies [7]) would al-
low our model to perform much better after RL training and
clarify the advantages and disadvantages of pretraining.

Generalizing Behavioral Cloning. Given our success
with BC and the fact that it did not take up nearly as many of
our person-hours on this project to implement as reinforce-
ment learning, we are interested in exploring how general
these models can be while retaining good performance on
simple games. We envision a unified system in which a user
can record gameplay of themself playing any keyboard in-
put based game, then receive as output a solidly performing
CNN model for the game.
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7. Contributions and Acknowledgements

7.1. Code Used and Problems Encountered

We used and adapted starter code from the Assignment
2 notebook to train our BC neural networks. However,
we programmed the game capture, input recording, and
game-playing (using the model to play the game and record
rewards) infrastructure entirely ourselves without starter
code. In this process, we encountered many problems that
needed fixing, including (but not limited to): Windows
taskbar captured by recording software, parsing individual
pixels on screen to measure reward attained, Steam notifi-
cations being interpreted as beating the level, etc. We spent
a significant portion of our time creating, tuning, and bug-
fixing this code in order to create the training data and test
our models.

We applied the REINFORCE algorithm using PyTorch’s
implementation as a starting point [1]. We modified the
implementation to work with our RL environment wrapper
around the game, and changed the training loop to work
with our reward function’s termination conditions. We also
substituted in our own network architecture, and modified
training code to work with stacks of four images, as de-
scribed in 3.2.

Similarly, we used PyTorch’s official Deep Q-Learning
tutorial [2] as a base for our Q-Learning experiments. Sim-
ilar changes were made to make things work with our game
environment wrapper, as well as work with our own DQN
network architecture with four frame stacked input. On top
of this, changes were made to the way replay memory was
stored, shuttling batches of replay memory transitions to
and from the GPU when needed to prevent GPU memory
overflow issues present in the original implementation. We
also used Adam for optimization instead of their choice of
RMSProp.

7.2. Author Contributions

We report no collaborators outside of the two authors
on this assignment. Buck Bukaty worked on most of
the programming for capturing game images, training the
reinforcement learning models, and creating the wrapper
around the game to allow our models to play live. Amy
Kanne worked on implementing and evaluating the be-
havioral cloning models, adapting single-image models to
work with quads, and network visualization. Both au-
thors worked equally on the presentation and writing of this
project.
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