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intended for humans [1]. Transfer learning with ResNet not effective — the game’s pixelated
We explore ways to use human gameplay to bootstrap features were too dissimilar with real life curves and lines.
the environmental understanding of deep reinforcement Recorded gold acquired in 5 random test levels.
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ilon for the epsilon-greedy policy of the DQN model.
Recorded playthroughs of 100 randomly generated levels. epsi
Result: labeled dataset of ~12,000 game frames and Deep Q-Network (DQN)
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40 All the models we tested had difficulty primarily with navigating through
. AN ]_\”_\N levels. Our best behavioral cloning model is quite good at fighting through
U VV U W V rooms of enemies, though, and its play is at times difficult to distinguish

0- from that of a human.
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