
Bootstrapping Visual Understanding in Deep Reinforcement Learning Models
Buck Bukaty, Amy Kanne

CS 221 - Department of Computer Science, Stanford University

Motivation Behavioral Cloning
• In games, reinforcement learning algorithms must learn 

visual information and environmental dynamics from the 

ground up by taking random actions.

• Recent work shows how this lack of prior understanding 

puts RL algorithms at a distinct disadvantage in games 

intended for humans [1].

• We explore ways to use human gameplay to bootstrap 

the environmental understanding of deep reinforcement 

learning models.

• Specifically, we utilize convolutional network weights 

learned from human gameplay to initialize Deep Q-

Network [2] and Policy Gradient [3] models.

Game Environment

• Our domain is the game 

Crypt of the NecroDancer.

• Turn based, takes place 

on a grid of tiles.

• Clear analogy to Markov 

Decision Process – take 

discrete action [left, right, 

up, down] and observe 

environment response.

Infrastructure
• Created software to capture screenshots of the game 

window during human play and label them with keyboard 

inputs.

• Recorded playthroughs of 100 randomly generated levels.

• Result: labeled dataset of ~12,000 game frames and 

corresponding button presses.

Feature Visualization
• Trained and tested convolutional networks for predicting human-

like inputs in response to game situations.

• Saw improvement when input included additional time dimension, 

stacked 4 images as input in the same manner as Mnih [3].

• Tested network architectures, consideration given to the game-

grid-aligned nature of input images.

• Transfer learning with ResNet not effective – the game’s pixelated 

features were too dissimilar with real life curves and lines.

• Recorded gold acquired in 5 random test levels.

RL Environment, Challenges

• No access to game state; 

manually scan life meter, gold 

meter, and level indicator for use 

in reward function.

• RL algorithms must train in real time, severely 

limiting training epochs.

Compared with a ResNet34, our architecture was much less deep 

with comparable performance. This was useful for intensive 

reinforcement learning training, when the necessary information 

for gradient updates for the ResNet34 overflowed GPU memory.

Architecture % Val Accuracy 1 2 3 4 5 Mean

Simple – Single Image Input 73 16 14 0 35 0 13

Deeper – Single Image Input 77 3 0 16 35 34 17.6

Resnet – Single Image Input 78 41 31 23 18 2 23

Simple – Four Image Input 74 8 16 9 24 2 11.8

Deeper – Four Image Input 79 9 37 13 43 0 20.4

Resnet – Four Image Input 80 9 34 39 12 46 28

Optimal Human Play (Oracle) 154 185 144 200 169 170.4

The dark spot over the low health blue slime indicates that if it were removed from the original image, the 

score given to the ‘left’ class would decrease significantly, as expected. Interestingly, the corresponding white 

spot on the green slime to the right indicates that its decision to move left would be easier if it weren’t there.

Original

Occlusion Map

Original

Saliency Map

Here, the human player has defeated all the enemies in their current room, and is deciding where to go next. 

The saliency map indicates that the empty squares around the player are primarily contributing to its decision 

making. More interestingly, there is also some weight given to the minimap in the bottom right

References

[1]

[3]

[2]

[4]

Policy Gradients (REINFORCE)

• Though somewhat unstable throughout training, our preinitialized 

reinforcement learning models reasonably outperformed their non-

preinitialized counterparts.

• All the models we tested had difficulty primarily with navigating through 

levels. Our best behavioral cloning model is quite good at fighting through 

rooms of enemies, though, and its play is at times difficult to distinguish 

from that of a human.

• Given more time to train and tweak our preinitialized reinforcement 

learning models, we believe they will be able to consistently outperform 

our best behavioral cloning model, as they did at some points throughout 

training. We plan to focus effort on finding good values for initial and final 

epsilon for the epsilon-greedy policy of the DQN model.

Deep Q-Network (DQN)

We interpret our best 

Behavioral Cloning network 

as a stochastic policy 

network, and perform 

gradient updates on it 

according to the 

REINFORCE algorithm. [5]

N
o

n
-P

re
in

it
ia

li
z
e

d
N

o
n

-P
re

in
it

ia
li

z
e

d

P
re

in
it

ia
li

z
e

d
P

re
in

it
ia

li
z
e

d

Discussion and Future Work

Implemented in PyTorch based on 

https://pytorch.org/tutorials/interme

diate/reinforcement_q_learning.ht

ml

Implemented in PyTorch based on 

https://github.com/pytorch/example

s/blob/master/reinforcement_learni

ng/reinforce.py

We interpret our best 

Behavioral Cloning network 

as a Q-function 

approximator, and perform 

gradient updates on it 

according to the Q-

Learning algorithm with 

experience replay and 

freezing target networks. [6]

[5]

[6]

Note: All reinforcement learning training seen below is performed on the same 

random level, functionally an MDP whose state we can only interpret visually.


